"""
kaldo
Anharmonic Lattice Dynamics
"""
from opt_einsum import contract
import numpy as np
from kaldo.controllers.dirac_kernel import lorentz_delta, gaussian_delta, triangular_delta
from kaldo.helpers.storage import lazy_property
import kaldo.observables.harmonic_with_q_temp as hwqwt
from kaldo.helpers.logger import get_logger, log_size
import gc
logging = get_logger()
def calculate_conductivity_per_mode(heat_capacity, velocity, mfp, physical_mode, n_phonons):
conductivity_per_mode = np.zeros((n_phonons, 3, 3))
physical_mode = physical_mode.reshape(n_phonons)
velocity = velocity.reshape((n_phonons, 3))
conductivity_per_mode[physical_mode, :, :] = \
heat_capacity[physical_mode, np.newaxis, np.newaxis] * velocity[physical_mode, :, np.newaxis] * \
mfp[physical_mode, np.newaxis, :]
return conductivity_per_mode * 1e22
def calculate_diffusivity(omega, sij_left, sij_right, diffusivity_bandwidth, physical_mode, curve,
is_diffusivity_including_antiresonant=False,
diffusivity_threshold=None):
# TODO: cache this
sigma = 2 * (diffusivity_bandwidth[:, np.newaxis] + diffusivity_bandwidth[np.newaxis, :])
physical_mode = physical_mode.astype(bool)
delta_energy = omega[:, np.newaxis] - omega[np.newaxis, :]
kernel = curve(delta_energy, sigma)
if diffusivity_threshold is not None:
condition = (np.abs(delta_energy) < diffusivity_threshold * 2 * np.pi * diffusivity_bandwidth)
kernel[np.invert(condition)] = 0
if is_diffusivity_including_antiresonant:
sum_energy = omega[:, np.newaxis] + omega[np.newaxis, :]
kernel += curve(sum_energy, sigma)
kernel = kernel * np.pi
kernel[np.isnan(kernel)] = 0
mu_unphysical = np.argwhere(np.invert(physical_mode)).T
kernel[:, :] = kernel / omega[:, np.newaxis]
kernel[:, :] = kernel[:, :] / omega[np.newaxis, :] / 4
kernel[mu_unphysical, :] = 0
kernel[:, mu_unphysical] = 0
diffusivity = sij_left * kernel * sij_right
return diffusivity
def mfp_matthiessen(gamma, velocity, length, physical_mode):
lambd_0 = np.zeros_like(velocity)
for alpha in range(3):
if length is not None:
if length[alpha] and length[alpha] != 0:
gamma = gamma + 2 * abs(velocity[:, alpha]) / length[alpha]
lambd_0[physical_mode, alpha] = 1 / gamma[physical_mode] * velocity[physical_mode, alpha]
return lambd_0
[docs]class Conductivity:
""" The conductivity object is responsible for mean free path and
conductivity calculations. It takes a phonons object as a required argument.
Parameters
----------
phonons : Phonons
Contains all the information about the calculated phononic properties of the system
method : 'rta', 'sc', 'qhgk', 'inverse'
Specifies the method used to calculate the conductivity.
diffusivity_bandwidth : float, optional
(QHGK) Specifies the bandwidth to use in the calculation of the flux operator in the Allen-Feldman model of the
thermal conductivity in amorphous systems. Units: rad/ps
diffusivity_threshold : float, optional
(QHGK) This option is off by default. In such case the flux operator in the QHGK and AF models is calculated
diffusivity_shape : string, optional
(QHGK) Defines the algorithm to use to calculate the diffusivity. Available broadenings are `gauss`, `lorentz` and `triangle`.
Default is `lorentz`.
is_diffusivity_including_antiresonant : bool, optional
(QHGK) Defines if you want to include or not anti-resonant terms in diffusivity calculations.
Default is `False`.
tolerance : int
(Self-consistent) In the self consistent conductivity calculation, it specifies the difference in W/m/K between n
and n+1 step, to set as exit/convergence condition.
n_iterations : int
(Self-consistent) Specifies the max number of iterations to set as exit condition in the self consistent conductivity
calculation
length: (3) tuple
(Finite Size) Specifies the length to use in x, y, z to calculate the finite size conductivity. 0 or None values
corresponds to the infinity length limit.
finite_length_method : 'ms', 'ballistic'
(Finite Size) Specifies how to calculate the finite size conductivity. 'ms' is the Mckelvey-Schockley method.
'ballistic' is the ballistic limit.
storage : 'formatted', 'hdf5', 'numpy', 'memory', optional
Defines the type of storage used for the simulation.
Default is `formatted`
Returns
-------
Conductivity
An instance of the `Conductivity` class.
Examples
--------
Here's an example to calculate the inverse conductivity on the phonons object and tracing over the phonons modes
```
Conductivity(phonons=phonons, method='inverse', storage='memory').conductivity.sum(axis=0))
```
"""
def __init__(self, **kwargs):
self.phonons = kwargs.pop('phonons')
self.method = kwargs.pop('method', 'rta')
self.storage = kwargs.pop('storage', 'formatted')
if self.method == 'rta':
self.n_iterations = 0
else:
self.n_iterations = kwargs.pop('n_iterations', None)
self.length = kwargs.pop('length', np.array([None, None, None]))
self.finite_length_method = kwargs.pop('finite_length_method', 'ms')
self.tolerance = kwargs.pop('tolerance', None)
self.folder = self.phonons.folder
self.kpts = self.phonons.kpts
self.n_k_points = self.phonons.n_k_points
self.n_modes = self.phonons.n_modes
self.n_phonons = self.phonons.n_phonons
self.temperature = self.phonons.temperature
self.is_classic = self.phonons.is_classic
self.third_bandwidth = self.phonons.third_bandwidth
self.diffusivity_bandwidth = kwargs.pop('diffusivity_bandwidth', None)
self.diffusivity_threshold = kwargs.pop('diffusivity_threshold', None)
self.is_diffusivity_including_antiresonant = kwargs.pop('is_diffusivity_including_antiresonant', False)
self.diffusivity_shape = kwargs.pop('diffusivity_shape', 'lorentz')
self.include_isotopes = self.phonons.include_isotopes
@lazy_property(
label='<diffusivity_bandwidth>/<diffusivity_threshold>/<temperature>/<statistics>/<third_bandwidth>/<include_isotopes>/<method>/<length>/<finite_length_method>')
def conductivity(self):
"""
Calculate the thermal conductivity per mode in W/m/K
Returns
-------
conductivity : np array
(n_k_points, n_modes, 3, 3) float
"""
method = self.method
other_avail_methods = ['rta', 'sc', 'inverse']
if (method == 'qhgk'):
cond, diff = self.calculate_conductivity_and_diffusivity_qhgk()
self._diffusivity = diff
elif (method == 'full'):
cond = self.calculate_conductivity_full()
elif method in other_avail_methods:
lambd = self.mean_free_path
conductivity_per_mode = calculate_conductivity_per_mode(
self.phonons.heat_capacity.reshape((self.n_phonons)),
self.phonons.velocity, lambd, self.phonons.physical_mode,
self.n_phonons)
volume = np.abs(np.linalg.det(self.phonons.atoms.cell))
cond = conductivity_per_mode / (volume * self.n_k_points)
else:
logging.error('Conductivity method not implemented')
# folder = get_folder_from_label(phonons, '<temperature>/<statistics>/<third_bandwidth>')
# save('cond', folder + '/' + method, cond.reshape(phonons.n_k_points, phonons.n_modes, 3, 3), \
# format=phonons.store_format['conductivity'])
sum = (cond.imag).sum()
if sum > 1e-3:
logging.warning('The conductivity has an immaginary part. Sum(Im(k)) = ' + str(sum))
logging.info('Conductivity calculated')
return cond.real
@lazy_property(
label='<diffusivity_bandwidth>/<diffusivity_threshold>/<temperature>/<statistics>/<third_bandwidth>/<include_isotopes>/<method>/<length>/<finite_length_method>')
def mean_free_path(self):
"""
Calculate the mean_free_path per mode in A
Returns
-------
mfp : np array
(n_k_points, n_modes) float
"""
method = self.method
if (method == 'qhgk'):
logging.error('Mean free path not available for ' + str(method))
elif method == 'rta':
mfp = self._calculate_mfp_sc()
elif method == 'sc':
mfp = self._calculate_mfp_sc()
elif (method == 'inverse'):
mfp = self.calculate_mfp_inverse()
else:
logging.error('Conductivity method not implemented')
# folder = get_folder_from_label(phonons, '<temperature>/<statistics>/<third_bandwidth>')
# save('cond', folder + '/' + method, cond.reshape(phonons.n_k_points, phonons.n_modes, 3, 3), \
# format=phonons.store_format['conductivity'])
sum = (mfp.imag).sum()
if sum > 1e-3:
logging.warning('The conductivity has an immaginary part. Sum(Im(k)) = ' + str(sum))
return mfp.real
@property
def diffusivity(self):
"""
Calculate the diffusivity, for each k point in k_points and each mode.
Returns
-------
diffusivity : np.array(n_k_points, n_modes)
diffusivity in mm^2/s
"""
try:
return self._diffusivity
except AttributeError:
logging.info('You need to calculate the conductivity QHGK first.')
[docs] def calculate_scattering_matrix(self, is_including_diagonal, is_rescaling_omega, is_rescaling_population):
"""Calculate the scattering matrix for phonons."""
physical_mode = self.phonons.physical_mode.reshape(self.n_phonons)
frequency = self.phonons.frequency.reshape(self.n_phonons)[physical_mode]
gamma_tensor = -1 * self.phonons._ps_gamma_and_gamma_tensor[:, 2:]
gamma_tensor = gamma_tensor[np.ix_(physical_mode, physical_mode)]
n_physical = physical_mode.sum()
log_size((n_physical, n_physical), float, name='_scattering_matrix')
if is_rescaling_population:
n = self.phonons.population.reshape(self.n_phonons)[physical_mode]
n_sqrt = (n * (n + 1)) ** 0.5
np.einsum('a,ab,b->ab', n_sqrt, gamma_tensor, 1 / n_sqrt, out=gamma_tensor)
logging.info('Asymmetry of gamma_tensor: ' + str(np.abs(gamma_tensor - gamma_tensor.T).sum()))
if is_including_diagonal:
gamma = self.phonons.bandwidth.reshape(self.n_phonons)[physical_mode]
np.fill_diagonal(gamma_tensor, gamma_tensor.diagonal() + gamma)
if is_rescaling_omega:
frequency_inv = 1 / frequency
np.multiply(frequency_inv[:, np.newaxis], gamma_tensor, out=gamma_tensor)
np.multiply(gamma_tensor, frequency[np.newaxis, :], out=gamma_tensor)
return gamma_tensor
def calculate_conductivity_and_diffusivity_qhgk(self):
phonons = self.phonons
omega = phonons.omega.reshape((phonons.n_k_points, phonons.n_modes))
volume = np.abs(np.linalg.det(phonons.atoms.cell))
q_points = phonons._reciprocal_grid.unitary_grid(is_wrapping=False)
physical_mode = phonons.physical_mode
conductivity_per_mode = np.zeros((self.phonons.n_k_points, self.phonons.n_modes, 3, 3), dtype=np.float32)
diffusivity_with_axis = np.zeros_like(conductivity_per_mode)
if self.diffusivity_shape == 'lorentz':
logging.info('Using Lorentzian diffusivity_shape')
curve = lorentz_delta
elif self.diffusivity_shape == 'gauss':
logging.info('Using Gaussian diffusivity_shape')
curve = gaussian_delta
elif self.diffusivity_shape == 'triangle':
logging.info('Using triangular diffusivity_shape')
curve = triangular_delta
else:
logging.error('Diffusivity shape not implemented')
return None, None
is_diffusivity_including_antiresonant = self.is_diffusivity_including_antiresonant
if self.diffusivity_bandwidth is not None:
logging.info('Using diffusivity bandwidth from input')
diffusivity_bandwidth = self.diffusivity_bandwidth * np.ones((phonons.n_k_points, phonons.n_modes),
dtype=np.float32)
else:
diffusivity_bandwidth = self.phonons.bandwidth.reshape((phonons.n_k_points, phonons.n_modes)) / 2.
logging.info('Start calculation diffusivity')
for k_index, q_point in enumerate(q_points):
phonon = hwqwt.HarmonicWithQTemp(
q_point=q_point,
second=self.phonons.forceconstants.second,
distance_threshold=self.phonons.forceconstants.distance_threshold,
folder=self.folder,
storage=self.storage,
temperature=self.temperature,
is_classic=self.is_classic,
is_nw=phonons.is_nw,
is_unfolding=phonons.is_unfolding,
is_amorphous=phonons._is_amorphous
)
heat_capacity_2d = phonon.heat_capacity_2d
if phonons.n_modes > 100:
logging.info('calculating conductivity for q = ' + str(q_point))
for alpha in range(3):
if alpha == 0:
sij_left = phonon._sij_x
elif alpha == 1:
sij_left = phonon._sij_y
elif alpha == 2:
sij_left = phonon._sij_z
for beta in range(3):
if beta == 0:
sij_right = phonon._sij_x
elif beta == 1:
sij_right = phonon._sij_y
elif beta == 2:
sij_right = phonon._sij_z
if not phonons._is_amorphous:
sij_right = np.conjugate(sij_right)
diffusivity = calculate_diffusivity(
omega[k_index], sij_left, sij_right,
diffusivity_bandwidth[k_index],
physical_mode[k_index],
curve,
is_diffusivity_including_antiresonant,
self.diffusivity_threshold
)
conductivity_per_mode[k_index, :, alpha, beta] = (
np.sum(heat_capacity_2d * diffusivity, axis=-1) / (volume * phonons.n_k_points)
).real
diffusivity_with_axis[k_index, :, alpha, beta] = np.sum(diffusivity, axis=-1).real
del sij_left, sij_right, diffusivity
del phonon, heat_capacity_2d
if k_index % 10 == 0:
gc.collect()
diffusivity = 1 / 3 * 1 / 100 * contract('knaa->kn', diffusivity_with_axis)
return conductivity_per_mode.reshape((self.n_phonons, 3, 3)) * 1e22, diffusivity
[docs] def calculate_mfp_inverse(self):
"""
This method calculates the inverse of the mean free path for each phonon.
The matrix returns k vectors for each mode and has units of inverse Angstroms.
Returns
-------
lambda : np array
(n_k_points, n_modes)
"""
length = self.length
phonons = self.phonons
finite_length_method = self.finite_length_method
physical_mode = phonons.physical_mode.reshape(phonons.n_phonons)
velocity = phonons.velocity.real.reshape((phonons.n_phonons, 3))
lambd = np.zeros_like(velocity, dtype=np.float32) # Use float32 if precision allows
for alpha in range(3):
scattering_matrix = self.calculate_scattering_matrix(
is_including_diagonal=False,
is_rescaling_omega=True,
is_rescaling_population=False
)
gamma = phonons.bandwidth.reshape(phonons.n_phonons)
if finite_length_method == 'ms' and length is not None and length[alpha]:
gamma += 2 * np.abs(velocity[:, alpha]) / length[alpha]
gc.collect()
np.add(scattering_matrix, np.diag(gamma[physical_mode]), out=scattering_matrix)
scattering_inverse = np.linalg.inv(scattering_matrix)
lambd[physical_mode, alpha] = scattering_inverse.dot(velocity[physical_mode, alpha])
del scattering_matrix, scattering_inverse, gamma
gc.collect()
if finite_length_method == 'ballistic' and (self.length[alpha] is not None) and (self.length[alpha] != 0):
velocity_alpha = velocity[physical_mode, alpha]
gamma_inv = np.zeros_like(velocity_alpha)
nonzero_velocity = velocity_alpha != 0
gamma_inv[nonzero_velocity] = length[alpha] / (2 * np.abs(velocity_alpha[nonzero_velocity]))
lambd[physical_mode, alpha] = np.diag(gamma_inv).dot(velocity_alpha)
del gamma_inv, nonzero_velocity, velocity_alpha
gc.collect()
return lambd
def calculate_lambda_tensor(self, alpha, scattering_inverse):
# TODO: replace with same caching strategy as rest of code
n_k_points = self.n_k_points
third_bandwidth = self.phonons.third_bandwidth
if self.phonons.is_classic:
stat_label = 'c'
else:
stat_label = 'q'
str_to_add = str(n_k_points) + '_' + str(alpha) + '_' + str(int(self.phonons.temperature)) + '_' + stat_label
lamdb_filename = 'lamdb_' + '_' + str_to_add
psi_filename = 'psi_' + str_to_add
psi_inv_filename = 'psi_inv_' + str_to_add
if third_bandwidth is not None:
lamdb_filename = lamdb_filename + '_' + str(third_bandwidth)
psi_filename = psi_filename + '_' + str(third_bandwidth)
psi_inv_filename = psi_inv_filename + '_' + str(third_bandwidth)
lamdb_filename = lamdb_filename + '.npy'
psi_filename = psi_filename + '.npy'
psi_inv_filename = psi_inv_filename + '.npy'
try:
self._lambd = np.load(lamdb_filename, allow_pickle=True)
self._psi = np.load(psi_filename, allow_pickle=True)
self._psi_inv = np.load(psi_inv_filename, allow_pickle=True)
except FileNotFoundError as err:
logging.info(err)
n_phonons = self.n_phonons
physical_mode = self.phonons.physical_mode.reshape(n_phonons)
velocity = self.phonons.velocity.real.reshape((n_phonons, 3))[physical_mode, :]
heat_capacity = self.phonons.heat_capacity.flatten()[physical_mode]
sqr_heat_capacity = heat_capacity ** 0.5
v_new = velocity[:, alpha]
lambd_tensor = contract('m,m,mn,n->mn', sqr_heat_capacity,
v_new,
scattering_inverse,
1 / sqr_heat_capacity)
# evals and evect equations
# lambd_tensor = psi.dot(np.diag(lambd)).dot(psi_inv)
# lambd_tensor.dot(psi) = psi.dot(np.diag(lambd))
self._lambd, self._psi = np.linalg.eig(lambd_tensor)
self._psi_inv = np.linalg.inv(self._psi)
np.save(lamdb_filename, self._lambd)
np.save(psi_filename, self._psi)
np.save(psi_inv_filename, self._psi_inv)
[docs] def calculate_conductivity_full(self, is_using_gamma_tensor_evects=False):
"""
This calculates the conductivity using the full solution of the space-dependent Boltzmann Transport Equation.
Returns
-------
conductivity_per_mode : np array
(n_k_points, n_modes, 3)
"""
length = self.length
n_phonons = self.n_phonons
n_k_points = self.n_k_points
volume = np.abs(np.linalg.det(self.phonons.atoms.cell))
physical_mode = self.phonons.physical_mode.reshape(n_phonons)
velocity = self.phonons.velocity.real.reshape((n_phonons, 3))[physical_mode, :]
heat_capacity = self.phonons.heat_capacity.flatten()[physical_mode]
gamma_tensor = self.calculate_scattering_matrix(is_including_diagonal=True,
is_rescaling_omega=False,
is_rescaling_population=True)
neg_diag = (gamma_tensor.diagonal() < 0).sum()
logging.info('negative on diagonal : ' + str(neg_diag))
log_size(gamma_tensor.shape, name='scattering_inverse')
if is_using_gamma_tensor_evects:
evals, evects = np.linalg.eigh(gamma_tensor)
logging.info('negative eigenvals : ' + str((evals < 0).sum()))
new_physical_states = np.argwhere(evals >= 0)[0, 0]
reduced_evects = evects[new_physical_states:, new_physical_states:]
reduced_evals = evals[new_physical_states:]
scattering_inverse = np.zeros_like(gamma_tensor)
scattering_inverse[new_physical_states:, new_physical_states:] = reduced_evects.dot(
np.diag(1 / reduced_evals)).dot((reduced_evects.T))
else:
scattering_inverse = np.linalg.inv(gamma_tensor)
full_cond = np.zeros((n_phonons, 3, 3))
for alpha in range(3):
self.calculate_lambda_tensor(alpha, scattering_inverse)
forward_states = self._lambd > 0
lambd_p = self._lambd[forward_states]
only_lambd_plus = self._lambd.copy()
only_lambd_plus[self._lambd < 0] = 0
lambd_tilde = only_lambd_plus
new_lambd = np.zeros_like(lambd_tilde)
# using average
# exp_tilde[self._lambd>0] = (length[alpha] + lambd_p * (-1 + np.exp(-length[alpha] / (lambd_p)))) * lambd_p/length[alpha]
if length is not None:
if length[alpha]:
leng = np.zeros_like(self._lambd)
leng[:] = length[alpha]
leng[self._lambd < 0] = 0
new_lambd[self._lambd > 0] = (1 - np.exp(-length[alpha] / (lambd_p))) * lambd_p
# exp_tilde[lambd<0] = (1 - np.exp(-length[0] / (-lambd_m))) * lambd_m
else:
new_lambd[self._lambd > 0] = lambd_p
else:
new_lambd[self._lambd > 0] = lambd_p
lambd_tilde = new_lambd
for beta in range(3):
cond = 2 * contract('nl,l,lk,k,k->n',
self._psi,
lambd_tilde,
self._psi_inv,
heat_capacity,
velocity[:, beta],
)
full_cond[physical_mode, alpha, beta] = cond
return full_cond / (volume * n_k_points) * 1e22
def _calculate_mfp_sc(self):
# TODO: rewrite this method as vector-vector multiplications instead of using the full inversion
# in order to scale to higher k points meshes
finite_length_method = self.finite_length_method
if finite_length_method == 'ms':
lambd_n = self._calculate_sc_mfp_with_length(matthiessen_length=self.length)
else:
lambd_n = self._calculate_sc_mfp_with_length()
return lambd_n
def _calculate_sc_mfp_with_length(self, matthiessen_length=None, max_iterations_sc=50):
tolerance = self.tolerance
n_iterations = self.n_iterations
phonons = self.phonons
if n_iterations is None:
n_iterations = max_iterations_sc
velocity = phonons.velocity.real.reshape((phonons.n_k_points, phonons.n_modes, 3))
velocity = velocity.reshape((phonons.n_phonons, 3))
physical_mode = phonons.physical_mode.reshape(phonons.n_phonons)
if n_iterations == 0:
gamma = phonons.bandwidth.reshape(phonons.n_phonons)
lambd_0 = mfp_matthiessen(gamma, velocity, matthiessen_length, physical_mode)
return lambd_0
else:
scattering_matrix = -1 * self.calculate_scattering_matrix(is_including_diagonal=False,
is_rescaling_omega=True,
is_rescaling_population=False)
gamma = phonons.bandwidth.reshape(phonons.n_phonons)
lambd_0 = mfp_matthiessen(gamma, velocity, matthiessen_length, physical_mode)
lambd_n = np.zeros_like(lambd_0)
avg_conductivity = None
n_iteration = 0
for n_iteration in range(n_iterations):
conductivity_per_mode = calculate_conductivity_per_mode(
phonons.heat_capacity.reshape((phonons.n_phonons)),
velocity, lambd_n, physical_mode, phonons.n_phonons)
new_avg_conductivity = np.diag(np.sum(conductivity_per_mode, 0)).mean()
if avg_conductivity:
if tolerance is not None:
if np.abs(avg_conductivity - new_avg_conductivity) < tolerance:
break
avg_conductivity = new_avg_conductivity
delta_lambd = 1 / phonons.bandwidth.reshape((phonons.n_phonons))[physical_mode, np.newaxis] \
* scattering_matrix.dot(lambd_n[physical_mode, :])
lambd_n[physical_mode, :] = lambd_0[physical_mode, :] + delta_lambd[:, :]
logging.info('Number of self-consistent iterations: ' + str(n_iteration))
return lambd_n